Comparison of Thermohydraulic Performance in Heat Exchanger Tube with Inserts

Rashpal Singh^{1*}, Alok Kumar¹, Abhishek Gautam¹, Rajesh Pandit¹

¹Asst. Prof., Mechanical Engineering Deprtmrnt, TULA'S Institute, Dehradun, India, Pin code: 248009,

*Corresponding Author: Rashpal Singh, Asst. Prof., Mechanical Engineering Deprtmrnt, TULA'S Institute, Dhoolkot, Dehradun, In-

dia, Pin code: 248197, Email: rashpal.singh@tulasinstitute.edu.in.

Abstract - Heat transfer enhancement by modifying the surface of heat exchanger has become a very interesting area of research for the researchers. The heat exchanger is the most commonly used thermal device in different thermal and mechanical systems such as Automobiles, Chemical industries, Refrigeration and Air conditioning systems, etc. Hence, many techniques have been investigated on enhancement of heat transfer rate and decrease the size and cost of the involving equipment especially in heat exchangers. This paper compares some of the very similar kind of experimental work carried out by some of the researchers in this area by taking air as the working fluid in heat exchanger tube. The comparison is made between some of the work on "core fluid disturbance", "disturbance by surface modification" and "combination of core and surface disturbance". The comparison is made on the basis of 'heat transfer, friction factor, and thermal performance factor' under the turbulent flow regime. On comparison and graph obtained it is found that the Heat transfer and friction factor is higher in case of Conical ring with twisted tape insert and the thermal performance factor is higher in case of perforated twisted tape and twisted tape separated from the wall.

Index Terms : Heat Transfer, Friction factor, Thermal performance factor, Twisted Tape, Conical Ring, Perforation, Passive Method.

1 INTRODUCTION

The heat exchangers are most commonly use thermal devices for different industrial and engineering applications. Nowadays high prices of energy, motivate industry to apply energy saving methods as much as possible in their facilities. Heat transfer enhancement techniques are one of the most important tools to save energy in different processes. Researching and optimizing the thermo-hydraulic performance of tube or duct flow with inserts has gained continuing attentions in related scientific and industrial fields. The design procedure of heat exchangers is quite complicated, as it needs exact analysis of heat transfer rate, efficiency and pressure drop apart from issues such as long-term performance and the economic aspect of the equipment. Whenever inserts technologies are used for the heat transfer enhancement, along with the improvement in the heat transfer rate, the pressure drop also increases, which induces the higher pumping cost. Therefore, any augmentation device or methods utilized into the heat exchanger should be optimized between the benefits of heat transfer coefficient and the higher pumping cost owing to the increased frictional losses. Because of the call for energy and cost saving heat transfer enhancement is a topic of pursuit for the researchers that how to improve techniques to increase the heat transfer rate and to achieve high efficiency with less cost and strength.

	Nomenclature				
STT	Single Twisted Tape	η	Thermal perform- ance factor		
DTT	Double Twisted Tape	PR	Pitch ratio		
Re	Reynolds number	DR	Diverging Ring		
Nu	Nusselt number	CR	Converging Ring		
f	Friction factor of tube with insert	f_s	Friction factor of plane Tube		
Nu _s	Nusselt number of plane tube	Pr	Prandtal number		
CDR	Converging- Diverging Ring	PCR	Perforated conical ring		
SWTT	Twisted Tape Sepa- rated From Wall	PTT	Perforated Twisted Tape		
SLTT	Short Length Twisted Tape	CRTT	Conical Ring with Twisted Tape		

2 Methodology

The work is carried out by comparing results and correlations of very similar kind of experimental work. Some different insert geometry has been taken, which includes Single Twisted Tape, Double Twisted Tape, Conical ring, Conical ring with Twisted tape, Perforated Twisted tape, etc. Each of the experiments has been performed on similar kind of experimental setup and because of their different geometry different result and correlation have been obtained by different researchers. In this paper all the work had been compared in order to get optimum result and future aspect. The different insert geometry and parameters used with their result and citation with reference number is shown in Table 1. All the correlations for heat transfer, friction factor and thermal performance factor is shown in Table 2. And Table 3., shows the values of parameters on which the correlation in each case shows the maximum result for heat transfer, friction factor, and thermal performance factor respectively.

Table no: 1 Insert geometry and parameters used.

REF	INSERT	INSERT		RESULT
•	ТҮРЕ		RAME-	
NO.		TF	ER	
[1]		٠	Reynolds	The average Nus-
			number	selt
	(Karakarin)		from	Numbers on the
	0 × × 3.		4000 to	tube fitted with
	Single TT		19,000.	the regularly-
	with no wall	•	Twist	spaced dual
	spacing		ratios $(w/w-2.0)$	twisted tapes (s/D) of 0.75, 1.5
	223		(y/w=3.0 , 4.0 and	(s/D) of 0.75, 1.5 and 2.25 are, re-
			, 4.0 and 5.0)	spectively, 140%,
	ON TO I	•	Space	137% and 133%
	Double TT		ratios	of that in the plain
	with no wall		(s/D=0.7	tube.
	spacing		5, 1.5	
			and	
			2.25).	
[2]		•	Twist	The highest heat
			ratios	transfer enhance-
			(y/D = 2,	ments are ob-
			2.5, 3, 3.5 and	tained at 1.756 for $a/D = 0.0178$
	Single TT		3.5 and 4)	c/D = 0.0178, as 1.744 for $c/D =$
	separated		+)	0.0357 and use
	from the tube wall.	•	Clear-	1.789 for the typi-
	wan.		ance ra-	cal twisted tape
			tios (c/D	(c/D = 0) at y/D =
			= 0.0178	2 of all TR.
			&	
			0.0357)	
			D 11	
		•	Reynolds number	
			from	
			5132 to	
			24,989	
[3]		•	Reynolds	Over the range
	1 SS F	/"	number	investigated,
		5	from	Nu, f & n in the
		and a state	7200 to	tube with perfo-
			49,800	rated TT inserts
	Perforated			was found to be
	TT	•	Porosi-	110–340, 110–

			ties (Rp) = 1.6, 4.5, 8.9 and 14.7%.	360 and 28–59% higher than those of the plain tube values, respective- ly.
[4]	Short Length TT	•	Reynolds number from 4000 to 20,000. Tape length ra- tios (LR=ls/lf) = 0.29, 0.43, 0.57 and 1.0.	The experimental result indicates that the short length tapes of LR = 0.29 , 0.43 and 0.57 perform low- er heat transfer & friction factor values than the full length tape around 14%, 9.5% and 6.7% ; and 21%, $15.3%$ and 10.5%.
[5]	Conical Ring with Twisted Tape	•	Twist ratios, Y=3. 75, and 7.5 Reynolds number 6000 to 26,000	A maximum heat transfer rate of 367% and enhanc- ing efficiency of around 1.96 is found for using the conical-ring and the twisted- tape of Y=3.75.
[6]	Conical ring arranged as CR, DR and CDR.	•	Reynolds number from 6000 to26,000 Diameter ratios of the ring to tube diameter (d/D = 0.5, 0.6, 0.7)	An augmentation of up to 197%, 333%, and 237% in Nusselt number is obtained in the turbulent flow for the CR, DR and CDR arrays, re- spectively.
[7]	Perforated Conical Ring	•	Reynolds number from 4000 to 20,000 Pitch ratios (PR=p/D =4, 6 and 12). Numbers of perfo- rated holes	Over the range investigated, the maximum thermal performance fac- tor of around 0.92 is found at PR=4 and N=8 holes with Reynolds number of 4000.

IJSER © 2016 http://www.ijser.org

(N=4, 6	
and 8	
holes).	

Table no: 2 Correlations obt	ained in case	of different geome-
	tries	

REF	CORRELATIONS			
•	Nu: Nusselt number, f : Frictional factor, η : Ther-			
NO.	mal performance factor			
[1]	1. $\mathbf{Nu} = 0.06$ $\mathrm{Re}^{0.75}\mathrm{Pr}$ $^{0.4}(\mathrm{y/w})^{-0.26}$ [STT]	1. Nu = 0.069 Re ^{0.74} Pr ^{0.4} (y/w) ^{-0.26} (1.5(s/D) + 1) ^{-0.1} [DTT] 2. f = 30.5		
	2. $\mathbf{f} = 10.02$ Re ^{-0.46} (y/w) ^{-0.48}	1) ^{-0.2} [DTT] 3. $\eta = 1.9$	^{0.54} (1.5(s/D) +	
	[STT] 3. $\eta =$ 2.4Re ^{-0.08} (y/w) -0.2 [STT]	$\operatorname{Re}^{-0.05}(y/w)^{-1}$	^{0.08} (1.5(s/D) +]]	
[2]	1. $\mathbf{Nu} = 0.406903$ $_{0.055072}^{0.038} \mathrm{Pr}^{0.38}$	Re ^{0.586556} (y/D)	- ^{0.443989} (c/D) ⁻	
		. f =6.544291 Re ^{-0.452085} (y/D) $^{-0.730772}$ (c/D) $^{-0.1579}$. η =9.750184 Re ^{-0.177983} (y/D) $^{-0.183513}$ (c/D) $^{-0.183513}$		
[3]	$\begin{array}{c} 0.6569 \} \text{ Re} \ {}^{0.00} \\ {}^{+0.0073\text{R}} {}^{+0.5501} \text{P} \end{array}$	1. $\mathbf{Nu} = \{0.0002R_{p}^{3} - 0.0046R_{p}^{2} + 0.0334R_{p} + 0.6569\} \operatorname{Re}_{p} \{0.00005R_{p}^{3} - 0.0013R_{p}^{2} + 0.0073R_{p}^{+0.5501}\} \operatorname{Pr}^{0.33}$		
	2. $\mathbf{f} = \{-0.0027 R_p^3 + 0.0583 R_p^2 + 0.0455 R_p + 24.536\} Re^{\{0.00009 R_3 - 0.0022 R_2 + 0.012 R_p - 0.6006\}} $ 3. $\eta = 36.995. C. C_1^{-06761} Re^{\{-0.000011y3\}} $			
	+0.00018792-0.000808	sy=0.07168}		
[4]	1. Nu =0.0664 Re ^{0.693} Pr ^{0.4} LR ^{0.122} 2. f = 2:8 Re ^{-0.386} LR ^{0.19} 3. η = 1.82 Re ^{-0.068} LR ^{0.067}			
[5]	1. $\mathbf{Nu} = 1.356 \text{ Re}^{0.433} \text{ Pr}^{0.4} (d/D)^{-1.23} \text{ Y}^{-0.053}$ 2. $\mathbf{f} = 24.87 \text{ Re}^{-0.43} (d/D)^{-3.99} \text{ Y}^{-0.16}$ 3. $\mathbf{\eta} = 14.9 \text{ Re}^{-0.277} (d/D)^{-0:129} \text{ Y}^{-0:01}$			
[6]	1. Nu = $0.09155 \text{Re}^{0.6}$ ${}^{55} \text{Pr}^{0.4} (\text{d/D})^{-1.31}$		Nu=0.1986Re ^{0.586} Pr ^{0.4} (d/D) ⁻ ^{1.3}	
	2. $\mathbf{f} = 1.12 \text{Re}^{-1.12 \text{RR}}^{-1.12 \text{RR}}^{-1.12 \text{RR}}^{-1.12 \text{RR}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	$f = 12.52 \text{Re}^{-1}$	f=1.038Re ⁻ ^{0.23} (d/D) ^{-4.58}	
	[CR] 3. $\eta = 2.37 \text{Re}^{-1.03}$ $(\text{d/D})^{-0.091}$	[DR] η =11.46Re ⁻ $^{0.255}(d/D)^{-}$ 0.126	[CDR] $\eta = 5.25 \text{Re}^{-1}$ $0.1799 (d/D)^{-0.076}$	
[7]	1. $\mathbf{Nu} = 1.258 \mathrm{Re}^{0}$ 2. $\mathbf{f} = 985.48 \mathrm{Re}^{-0}$ 3. $\boldsymbol{\eta} = 1.596 \mathrm{Re}^{-0.6}$	368 PR $^{-0.747}$ N $^{-1.25}$	53	

Table no: 3 Result showing peak values of correlations

REF.	PARAMETERS AT WHICH THE RESULT GIVES			
NO.	THE MAXIMUM VALUE			
	Nu	f	η	
[1]	y/w=3; s/D=0	y/w=3; s/D=0	y/w=3; s/D=0	
[2]	Twist ratio (y/D)	Twist ratio	Twist ratio $(y/D) =$	
	= 2	(y/D) = 2	2	
	Clearance ratio	Clearance ratio	Clearance ratio	
	(c/D) = 0.0178	(c/D) = 0.0178	(c/D) = 0.0178	
[3]	$R_{p} = 4.5\%$	R _p =4.5%	R _p =4.5%	
[4]	LR=1	LR=1	LR=1	
[5]	Y=3.75 &	Y=3.75 &	Y=3.75 & d/D=0.5	
	d/D=0.5	d/D=0.5		
[6]	DR(d/D)=.5,	DR(d/D)=.5,	DR(d/D)=.5,	
	CR(d/D)=.6,	CR(d/D)=.6,	CR(d/D)=.6,	
	CDR(d/D)=.5	CDR(d/D)=.5	CDR(d/D)=.5	
[7]	N=8, PR=4	N=8, PR=4	N=8, PR=4	

3. Results and Discussion

On the basis of comparison between the different inserts used in the Heat exchanger tube for the enhancement of heat transfer rate and to improve the overall thermal performance factor of Heat exchanger tube following results can be formulated:

3.1 Effect of different parameters on Heat Transfer.

On the basis of comparisons made and graph obtained, it is concluded that Heat transfer variation depends on the geometry of inserts used and their parameters. From the graph obtained as shown in Fig. 1 (a & b), it can be said that heat transfer is maximum in case of CRTT [5] and minimum in case of CDR [6]. In case of Twisted tapes, as the twist ratio decreases the heat transfer increases and for porosity of 4.5% the heat transfer shows maximum value. Similarly for the diameter and pitch ratio also, as the value or these parameters decreases the heat transfer increases and vice-versa.

But if we talk about Reynolds number, it can be easily seen that as the value of Reynolds number increases the heat transfer decreases for all the parameters.

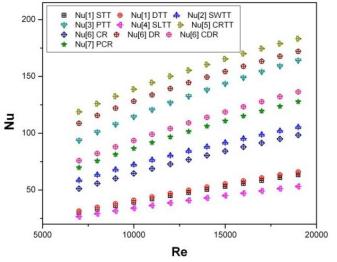


Fig.1 (a) Nusselt No.(Nu) Verses Reynolds No. (Re)

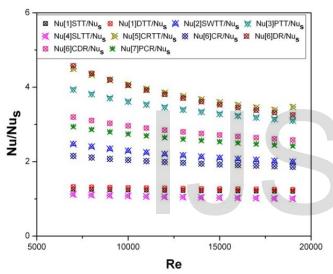


Fig.1 (b) Nusselt No.(Nu/Nu_s) verses Reynolds No.(Re)

3.2 Effect of different parameters on Friction factor.

On the basis of comparison made and graph obtained, it is concluded that Friction factor variation depends on the geometry of inserts used and their parameters. From the graph obtained as shown in Fig. 2 (a & b), it can be said that friction factor is maximum in case of CRTT [5] and minimum in case of STT [1], DTT [1], SWTT [2], PTT [3] and SLTT [4]. In case of Twisted Tapes, as the twist ratio decreases the friction factor increases and for porosity of 4.5% the friction factor shows maximum value. Similarly for the diameter and pitch ratio also, as the value or these parameters decreases the friction factor increases and vice-versa. But if we talk about Reynolds number, it can be easily seen that as the value of the Reynolds number increases the friction factor value also increases for all the parameters.

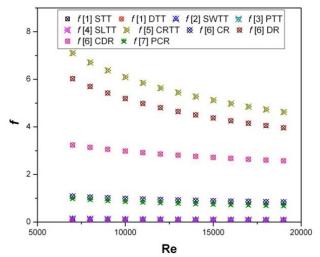


Fig.2 (a) Friction factor (f) verses Reynolds No. (Re)

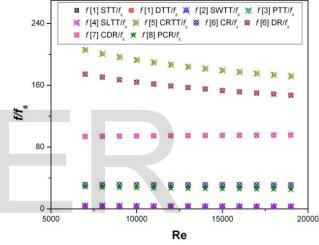


Fig.2 (b) Friction factor (f/f_s) verses Reynolds No. (Re)

3.3 Effect of different parameters and different geometries on Thermal Performance factor.

On the basis of graphs obtained which is shown in Fig. 3, it is found that Thermal performance factor improves significantly by the use of some of the insert geometries and also diminishes by some of the insert geometries. In this situation the use of SWTT [2] and PTT [3] gives the maximum improvement in the thermal performance factor as compared to other geometries. Similarly the use of STT [1], CR [6] & SLTT [4] shows poor result.

For the lower values of Reynolds number the thermal performance factor is higher and as the value of the Reynolds number increases the net thermal performance factor also decreases to lower values. For the Twisted tape inserts, twisted tape separated from the wall shows good result as compared to twisted tape with no clearance from wall. As the twist ratio, pitch ratio, diameter ratio decreases the value of thermal performance factor improves.

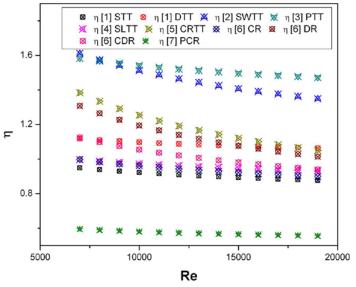


Fig. 3 Thermal performance factor (η) verses the Reynolds number (Re)

4. Conclusion

According to comparison which is made between all the different insert geometries, it can be concluded that the thermal performance factor of Heat exchanger tube with single twisted tape insert separated from wall [2] is higher and it gives 1.6 times improved results as compared to the plane tube Heat exchanger. After SWTT, perforated twisted tape [3] shows good result by giving around 1.5 times better results as compared to smooth surface Heat exchanger tube. It is also seen that at the low Reynolds number of the turbulent flow region the value of thermal performance factor is maximum in all the situations, and as the value of the Reynolds number increases the value of thermal performance factor decreases. In other words, it can be also said that for better results and better thermal performance factor the Heat exchanger should be operated at lower values of the Reynolds number.

So it can be easily said that for better result and cost efficient, it is good to use single twisted tape insert separated from the tube wall as tuberatorss in Heat exchanger tube for enhancing its overall thermal performance.

But if we consider only heat transfer, the use of conical rings and conical rings with twisted tapes will give a good amount of heat transfer as compared to other insert geometries.

ACKNOWLEDGMENT

The authors wish to thank Tula's Institute, Dehradun for providing research facility.

REFERENCES

[1] Smith Eiamsa-ard, Chinaruk Thianpong, Petpices Eiamsaard, Pongjet Promvonge. Thermal characteristics in a heat exchanger tube fitted with dual twisted tape elements in tandem. International Communications in Heat and Mass Transfer 37 (2010) 39–46.

- [2] Halit Bas, Veysel Ozceyhan. Heat transfer enhancement in a tube with twisted tape inserts placed separately from the tube wall. Experimental Thermal and Fluid Science 41 (2012) 51– 58.
- [3] M.M.K. Bhuiya, M.S.U. Chowdhury, M. Saha, M.T. Islam. Heat transfer and friction factor characteristics in turbulent flow through a tube fitted with perforated twisted tape inserts. International Communications in Heat and Mass Transfer 46 (2013) 49–57.
- [4] Smith Eiamsa-ard, Chinaruk Thianpong, Petpices Eiamsaard, Pongjet Promvonge. Convective heat transfer in a circular tube with short-length twisted tape insert. International Communications in Heat and Mass Transfer 36 (2009) 365– 371
- [5] P. Promvonge, S. Eiamsa-ard. Heat transfer behaviors in a tube with combined conical ring and twisted-tape insert. International Communications in Heat and Mass Transfer 34 (2007) 849–859.
- [6] P. Promvonge. Heat transfer behaviors in round tube with conical ring inserts. Energy Conversion and Management 49 (2008) 8–15.
- [7] V. Kongkaitpaiboon, K. Nanan, S. Eiamsa-ard. Experimental investigation of heat transfer and turbulent flow friction in a tube fitted with perforated conical-rings. International Communications in Heat and Mass Transfer 37 (2010) 560–567.

